Run
10464009

Run 10464009

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.linear_model._stoch astic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.MultinomialNB(6)_alpha2.256532090676214
sklearn.naive_bayes.MultinomialNB(6)_class_priornull
sklearn.naive_bayes.MultinomialNB(6)_fit_priortrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.4134647421496067
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon13.997182445442286
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.644278856688441
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"optimal"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"squared_loss"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1235
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change77
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.0045085224184933225
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.4907366294511509
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5024 ± 0.0112
Per class
Cross-validation details (10-fold Crossvalidation)
0.3255 ± 0.1464
Per class
Cross-validation details (10-fold Crossvalidation)
0.0044 ± 0.0219
Cross-validation details (10-fold Crossvalidation)
-0.1044 ± 0.0529
Cross-validation details (10-fold Crossvalidation)
0.5439 ± 0.0261
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4561 ± 0.0261
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.5197 ± 0.1723
Per class
Cross-validation details (10-fold Crossvalidation)
0.4561 ± 0.0261
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1.0992 ± 0.0527
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.7375 ± 0.0182
Cross-validation details (10-fold Crossvalidation)
1.4827 ± 0.0367
Cross-validation details (10-fold Crossvalidation)
0.5024 ± 0.0112
Cross-validation details (10-fold Crossvalidation)