Run
10463892

Run 10463892

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPC A,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha1.3993016904638942
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon48.37668935355184
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.5816181002095951
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"optimal"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"squared_hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1774
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change70
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.04742283681081775
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.9097920392963565
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.8778862366402973
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_alpha1.0
sklearn.decomposition._kernel_pca.KernelPCA(1)_coef00.25382816763099036
sklearn.decomposition._kernel_pca.KernelPCA(1)_copy_Xfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_degree2
sklearn.decomposition._kernel_pca.KernelPCA(1)_eigen_solver"arpack"
sklearn.decomposition._kernel_pca.KernelPCA(1)_fit_inverse_transformfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_gamma3.2272174528977e-08
sklearn.decomposition._kernel_pca.KernelPCA(1)_kernel"poly"
sklearn.decomposition._kernel_pca.KernelPCA(1)_kernel_paramsnull
sklearn.decomposition._kernel_pca.KernelPCA(1)_max_iter219
sklearn.decomposition._kernel_pca.KernelPCA(1)_n_components1
sklearn.decomposition._kernel_pca.KernelPCA(1)_n_jobs1
sklearn.decomposition._kernel_pca.KernelPCA(1)_random_state42
sklearn.decomposition._kernel_pca.KernelPCA(1)_remove_zero_eigfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_tol0.6622840767983562
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5 ± 0.0002
Per class
Cross-validation details (10-fold Crossvalidation)
0.3918 ± 0.0011
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0001 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.0885 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.4489 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5511 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.4534 ± 0.1587
Per class
Cross-validation details (10-fold Crossvalidation)
0.5511 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9072 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.67 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
1.347 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0.0002
Cross-validation details (10-fold Crossvalidation)