Run
10463853

Run 10463853

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_sele ction.GenericUnivariateSelect,step_1=sklearn.ensemble._weight_boosting.AdaB oostClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_algorithm"SAMME"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_base_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_learning_rate1.6429981271279315e-05
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_n_estimators422
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_random_state42
sklearn.feature_selection._univariate_selection.GenericUnivariateSelect(1)_mode"fwe"
sklearn.feature_selection._univariate_selection.GenericUnivariateSelect(1)_param0.0960936780047215
sklearn.feature_selection._univariate_selection.GenericUnivariateSelect(1)_score_func{"oml-python:serialized_object": "function", "value": "sklearn.feature_selection._univariate_selection.f_classif"}
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.GenericUnivariateSelect,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.GenericUnivariateSelect,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.GenericUnivariateSelect,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5026 ± 0.0269
Per class
Cross-validation details (10-fold Crossvalidation)
0.4227
Per class
Cross-validation details (10-fold Crossvalidation)
0.018 ± 0.0538
Cross-validation details (10-fold Crossvalidation)
0.0483 ± 0.0181
Cross-validation details (10-fold Crossvalidation)
0.4737 ± 0.0075
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5563 ± 0.0163
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.5701
Per class
Cross-validation details (10-fold Crossvalidation)
0.5563 ± 0.0163
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9575 ± 0.0151
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5258 ± 0.0075
Cross-validation details (10-fold Crossvalidation)
1.0571 ± 0.015
Cross-validation details (10-fold Crossvalidation)
0.5082 ± 0.026
Cross-validation details (10-fold Crossvalidation)