Run
10463632

Run 10463632

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.linear_m odel._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.tree._classes.DecisionTreeClassifier(3)_ccp_alpha0.26992910462282804
sklearn.tree._classes.DecisionTreeClassifier(3)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(3)_criterion"entropy"
sklearn.tree._classes.DecisionTreeClassifier(3)_max_depth11
sklearn.tree._classes.DecisionTreeClassifier(3)_max_features0.5645242817944867
sklearn.tree._classes.DecisionTreeClassifier(3)_max_leaf_nodes10798
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_decrease0.05063532567232268
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_splitnull
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_leaf0.3383110512418483
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_split0.4741022880804795
sklearn.tree._classes.DecisionTreeClassifier(3)_min_weight_fraction_leaf0.196790783025391
sklearn.tree._classes.DecisionTreeClassifier(3)_presort"deprecated"
sklearn.tree._classes.DecisionTreeClassifier(3)_random_state42
sklearn.tree._classes.DecisionTreeClassifier(3)_splitter"random"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.45874978571030206
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon48.05127368440123
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.24484861696409854
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.8656890174534497
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"adaptive"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"perceptron"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1231
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change93
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.07065640395471728
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.3121256049823722
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5
Per class
Cross-validation details (10-fold Crossvalidation)
0.486
Per class
0.0001
-0.036 ± 0.1074
Cross-validation details (10-fold Crossvalidation)
0.5102 ± 0.0529
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4898 ± 0.0529
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.5053
Per class
0.4898 ± 0.0529
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1.0312 ± 0.1069
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.7143 ± 0.0374
Cross-validation details (10-fold Crossvalidation)
1.4361 ± 0.0753
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)