Run
10463599

Run 10463599

Task 3021 (Supervised Classification) sick Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step _1=sklearn.decomposition._pca.PCA,step_2=sklearn.linear_model._stochastic_g radient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha3.704185916595048e-06
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon24.92351424075441
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.9893351644871207
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"optimal"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"modified_huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1970
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change20
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.912534490815142
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.33929025394143975
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.6500583188879022
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.decomposition._pca.PCA(1)_copyfalse
sklearn.decomposition._pca.PCA(1)_iterated_power283
sklearn.decomposition._pca.PCA(1)_n_components5
sklearn.decomposition._pca.PCA(1)_random_state42
sklearn.decomposition._pca.PCA(1)_svd_solver"randomized"
sklearn.decomposition._pca.PCA(1)_tol3.147958188430213
sklearn.decomposition._pca.PCA(1)_whitentrue
sklearn.impute._base.MissingIndicator(1)_error_on_newtrue
sklearn.impute._base.MissingIndicator(1)_features"all"
sklearn.impute._base.MissingIndicator(1)_missing_valuesNaN
sklearn.impute._base.MissingIndicator(1)_sparse"auto"
sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step_1=sklearn.decomposition._pca.PCA,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step_1=sklearn.decomposition._pca.PCA,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step_1=sklearn.decomposition._pca.PCA,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5707 ± 0.0358
Per class
Cross-validation details (10-fold Crossvalidation)
0.3123 ± 0.0728
Per class
Cross-validation details (10-fold Crossvalidation)
0.021 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
-8.4095 ± 0.6758
Cross-validation details (10-fold Crossvalidation)
0.76 ± 0.0542
Cross-validation details (10-fold Crossvalidation)
0.1152 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.2402 ± 0.0545
Cross-validation details (10-fold Crossvalidation)
3772
Per class
Cross-validation details (10-fold Crossvalidation)
0.927 ± 0.0151
Per class
Cross-validation details (10-fold Crossvalidation)
0.2402 ± 0.0545
Cross-validation details (10-fold Crossvalidation)
0.3324 ± 0.0031
Cross-validation details (10-fold Crossvalidation)
6.5983 ± 0.4711
Cross-validation details (10-fold Crossvalidation)
0.2398 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.8717 ± 0.032
Cross-validation details (10-fold Crossvalidation)
3.6354 ± 0.134
Cross-validation details (10-fold Crossvalidation)
0.571 ± 0.036
Cross-validation details (10-fold Crossvalidation)