Run
10463316

Run 10463316

Task 3021 (Supervised Classification) sick Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=automl.components.data_preproc essing.imputation.ImputationComponent,step_2=sklearn.discriminant_analysis. LinearDiscriminantAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components40
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.05104196482570922
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"lsqr"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol3.71285176734666e-07
automl.components.data_preprocessing.imputation.ImputationComponent(1)_add_indicatortrue
automl.components.data_preprocessing.imputation.ImputationComponent(1)_missing_valuesNaN
automl.components.data_preprocessing.imputation.ImputationComponent(1)_strategy"most_frequent"
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=automl.components.data_preprocessing.imputation.ImputationComponent,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=automl.components.data_preprocessing.imputation.ImputationComponent,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=automl.components.data_preprocessing.imputation.ImputationComponent,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8386 ± 0.0418
Per class
Cross-validation details (10-fold Crossvalidation)
0.9098 ± 0.0047
Per class
Cross-validation details (10-fold Crossvalidation)
0.0188 ± 0.0397
Cross-validation details (10-fold Crossvalidation)
-0.2392 ± 0.0876
Cross-validation details (10-fold Crossvalidation)
0.1001 ± 0.0029
Cross-validation details (10-fold Crossvalidation)
0.1152 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.9372 ± 0.0035
Cross-validation details (10-fold Crossvalidation)
3772
Per class
Cross-validation details (10-fold Crossvalidation)
0.8971 ± 0.0297
Per class
Cross-validation details (10-fold Crossvalidation)
0.9372 ± 0.0035
Cross-validation details (10-fold Crossvalidation)
0.3324 ± 0.0031
Cross-validation details (10-fold Crossvalidation)
0.8692 ± 0.0258
Cross-validation details (10-fold Crossvalidation)
0.2398 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.2278 ± 0.0035
Cross-validation details (10-fold Crossvalidation)
0.9502 ± 0.0126
Cross-validation details (10-fold Crossvalidation)
0.5052 ± 0.0111
Cross-validation details (10-fold Crossvalidation)