Run
10463123

Run 10463123

Task 3021 (Supervised Classification) sick Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step _1=sklearn.feature_selection._variance_threshold.VarianceThreshold,step_2=s klearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha10.572664215820147
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon22.593633723683805
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.2667253258649127
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"optimal"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1228
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change35
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.2939820816542675
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.04066849726785994
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.9943724543957903
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.feature_selection._variance_threshold.VarianceThreshold(2)_threshold0.0
sklearn.impute._base.MissingIndicator(1)_error_on_newtrue
sklearn.impute._base.MissingIndicator(1)_features"all"
sklearn.impute._base.MissingIndicator(1)_missing_valuesNaN
sklearn.impute._base.MissingIndicator(1)_sparse"auto"
sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step_1=sklearn.feature_selection._variance_threshold.VarianceThreshold,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step_1=sklearn.feature_selection._variance_threshold.VarianceThreshold,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step_1=sklearn.feature_selection._variance_threshold.VarianceThreshold,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.3845 ± 0.0464
Per class
Cross-validation details (10-fold Crossvalidation)
0.74 ± 0.0245
Per class
Cross-validation details (10-fold Crossvalidation)
-0.082 ± 0.0302
Cross-validation details (10-fold Crossvalidation)
-3.3366 ± 0.4374
Cross-validation details (10-fold Crossvalidation)
0.3502 ± 0.0349
Cross-validation details (10-fold Crossvalidation)
0.1152 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.6498 ± 0.0349
Cross-validation details (10-fold Crossvalidation)
3772
Per class
Cross-validation details (10-fold Crossvalidation)
0.8645 ± 0.0091
Per class
Cross-validation details (10-fold Crossvalidation)
0.6498 ± 0.0349
Cross-validation details (10-fold Crossvalidation)
0.3324 ± 0.0031
Cross-validation details (10-fold Crossvalidation)
3.0404 ± 0.305
Cross-validation details (10-fold Crossvalidation)
0.2398 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.5918 ± 0.0296
Cross-validation details (10-fold Crossvalidation)
2.4681 ± 0.1255
Cross-validation details (10-fold Crossvalidation)
0.3845 ± 0.0464
Cross-validation details (10-fold Crossvalidation)