Run
10463067

Run 10463067

Task 9977 (Supervised Classification) nomao Uploaded 21-05-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num =sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.Standa rdScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing ._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(4)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing.data.StandardScaler(35)_copytrue
sklearn.preprocessing.data.StandardScaler(35)_with_meantrue
sklearn.preprocessing.data.StandardScaler(35)_with_stdtrue
sklearn.impute._base.SimpleImputer(11)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(11)_copytrue
sklearn.impute._base.SimpleImputer(11)_fill_valuenull
sklearn.impute._base.SimpleImputer(11)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(11)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(11)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(16)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(16)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(16)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_sparsetrue
sklearn.svm.classes.SVC(40)_C690.6018801899403
sklearn.svm.classes.SVC(40)_cache_size200
sklearn.svm.classes.SVC(40)_class_weightnull
sklearn.svm.classes.SVC(40)_coef0-0.6356144967116901
sklearn.svm.classes.SVC(40)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(40)_degree5
sklearn.svm.classes.SVC(40)_gamma0.0008714226148272087
sklearn.svm.classes.SVC(40)_kernel"rbf"
sklearn.svm.classes.SVC(40)_max_iter-1
sklearn.svm.classes.SVC(40)_probabilitytrue
sklearn.svm.classes.SVC(40)_random_state1
sklearn.svm.classes.SVC(40)_shrinkingtrue
sklearn.svm.classes.SVC(40)_tol0.001
sklearn.svm.classes.SVC(40)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(4)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(4)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(4)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "num", "step_name": "num", "argument_1": [true, true, true, true, true, true, false, false, true, true, true, true, true, true, false, false, true, true, true, true, true, true, false, false, true, true, true, true, true, true, false, false, true, true, true, true, true, true, false, false, true, true, true, true, true, true, false, false, true, true, true, true, true, true, false, false, true, true, true, true, true, true, false, false, true, true, true, true, true, true, false, false, true, true, true, true, true, true, false, false, true, true, true, true, true, true, false, false, true, true, true, false, true, true, true, false, true, true, true, false, true, true, true, false, true, true, true, false, true, true, true, false, true, true, true, false, true, true]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": [false, false, false, false, false, false, true, true, false, false, false, false, false, false, true, true, false, false, false, false, false, false, true, true, false, false, false, false, false, false, true, true, false, false, false, false, false, false, true, true, false, false, false, false, false, false, true, true, false, false, false, false, false, false, true, true, false, false, false, false, false, false, true, true, false, false, false, false, false, false, true, true, false, false, false, false, false, false, true, true, false, false, false, false, false, false, true, true, false, false, false, true, false, false, false, true, false, false, false, true, false, false, false, true, false, false, false, true, false, false, false, true, false, false, false, true, false, false]}}]
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_verbosefalse
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_memorynull
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_verbosefalse
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(7)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(7)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(7)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9923 ± 0.001
Per class
Cross-validation details (10-fold Crossvalidation)
0.9638 ± 0.0018
Per class
Cross-validation details (10-fold Crossvalidation)
0.9114 ± 0.0045
Cross-validation details (10-fold Crossvalidation)
0.8682 ± 0.0045
Cross-validation details (10-fold Crossvalidation)
0.0554 ± 0.0017
Cross-validation details (10-fold Crossvalidation)
0.4081 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9638 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
34465
Per class
Cross-validation details (10-fold Crossvalidation)
0.9638 ± 0.0019
Per class
Cross-validation details (10-fold Crossvalidation)
0.9638 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.863 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.1357 ± 0.0042
Cross-validation details (10-fold Crossvalidation)
0.4517 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.165 ± 0.0045
Cross-validation details (10-fold Crossvalidation)
0.3653 ± 0.0098
Cross-validation details (10-fold Crossvalidation)
0.9563 ± 0.0033
Cross-validation details (10-fold Crossvalidation)