Run
10463000

Run 10463000

Task 3021 (Supervised Classification) sick Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step _1=sklearn.preprocessing._data.RobustScaler,step_2=sklearn.ensemble._hist_g radient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_l2_regularization0.23075658022594436
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_learning_rate0.00017080625694125204
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_bins13
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_depth5
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_iter154
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_leaf_nodes3046
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_min_samples_leaf917
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_n_iter_no_change98
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_random_state42
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_scoring"precision_micro"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_tol0.2304088484785075
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_validation_fraction0.5805175920731862
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_warm_startfalse
sklearn.preprocessing._data.RobustScaler(1)_copyfalse
sklearn.preprocessing._data.RobustScaler(1)_quantile_range[12.102368920603046, 18.335493230980106]
sklearn.preprocessing._data.RobustScaler(1)_with_centeringtrue
sklearn.preprocessing._data.RobustScaler(1)_with_scalingtrue
sklearn.impute._base.MissingIndicator(1)_error_on_newtrue
sklearn.impute._base.MissingIndicator(1)_features"all"
sklearn.impute._base.MissingIndicator(1)_missing_valuesNaN
sklearn.impute._base.MissingIndicator(1)_sparse"auto"
sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step_1=sklearn.preprocessing._data.RobustScaler,step_2=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step_1=sklearn.preprocessing._data.RobustScaler,step_2=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.impute._base.MissingIndicator,step_1=sklearn.preprocessing._data.RobustScaler,step_2=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.5016
Per class
Cross-validation details (10-fold Crossvalidation)
0.0015 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.1149 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.1152 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.9388 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
3772
Per class
Cross-validation details (10-fold Crossvalidation)
0.9388 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.3324 ± 0.0031
Cross-validation details (10-fold Crossvalidation)
0.9972 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.2398 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.2398 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)