Run
10462832

Run 10462832

Task 3891 (Supervised Classification) gina_agnostic Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAggl omeration,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting .HistGradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_l2_regularization1.8431638841069538e-07
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_learning_rate0.051539837106316835
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_bins177
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_depth218
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_iter481
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_leaf_nodes972
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_min_samples_leaf956
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_n_iter_no_change0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_random_state42
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_scoring"f1_samples"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_tol0.1123121143519546
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_validation_fraction0.4065053758974448
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_warm_startfalse
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_affinity"precomputed"
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_compute_full_treefalse
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_connectivitynull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_distance_thresholdnull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_linkage"complete"
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_memorynull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_n_clusters941
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_pooling_func{"oml-python:serialized_object": "function", "value": "numpy.mean"}
sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAgglomeration,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAgglomeration,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAgglomeration,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9427 ± 0.0141
Per class
Cross-validation details (10-fold Crossvalidation)
0.8757 ± 0.0176
Per class
Cross-validation details (10-fold Crossvalidation)
0.7514 ± 0.035
Cross-validation details (10-fold Crossvalidation)
0.6059 ± 0.0218
Cross-validation details (10-fold Crossvalidation)
0.2132 ± 0.0104
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.8757 ± 0.0176
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.8758 ± 0.0173
Per class
Cross-validation details (10-fold Crossvalidation)
0.8757 ± 0.0176
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4265 ± 0.0208
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3081 ± 0.0156
Cross-validation details (10-fold Crossvalidation)
0.6163 ± 0.0312
Cross-validation details (10-fold Crossvalidation)
0.8757 ± 0.0173
Cross-validation details (10-fold Crossvalidation)