Run
10462831

Run 10462831

Task 3891 (Supervised Classification) gina_agnostic Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAggl omeration,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1 )Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha9.814427658208247e-05
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon11.539488384089418
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.24083026062699533
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.4217311594130155
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"squared_loss"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1240
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change96
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l1"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.021731213674824213
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.881543477406713
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.450394032259699
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_affinity"l2"
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_compute_full_treefalse
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_connectivitynull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_distance_thresholdnull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_linkage"single"
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_memorynull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_n_clusters790
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_pooling_func{"oml-python:serialized_object": "function", "value": "numpy.median"}
sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAgglomeration,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAgglomeration,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAgglomeration,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4972 ± 0.0445
Per class
Cross-validation details (10-fold Crossvalidation)
0.4951 ± 0.0568
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0057 ± 0.0891
Cross-validation details (10-fold Crossvalidation)
-0.0033 ± 0.0926
Cross-validation details (10-fold Crossvalidation)
0.5014 ± 0.0463
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4986 ± 0.0463
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.4972 ± 0.0592
Per class
Cross-validation details (10-fold Crossvalidation)
0.4986 ± 0.0463
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1.0032 ± 0.0926
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.7081 ± 0.0324
Cross-validation details (10-fold Crossvalidation)
1.4164 ± 0.0648
Cross-validation details (10-fold Crossvalidation)
0.4972 ± 0.0445
Cross-validation details (10-fold Crossvalidation)