Issue | #Downvotes for this reason | By |
---|
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.Trunc atedSVD,step_1=sklearn.naive_bayes.BernoulliNB)(1) | Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``. |
sklearn.naive_bayes.BernoulliNB(11)_alpha | 19.616161220679533 |
sklearn.naive_bayes.BernoulliNB(11)_binarize | 0.0 |
sklearn.naive_bayes.BernoulliNB(11)_class_prior | null |
sklearn.naive_bayes.BernoulliNB(11)_fit_prior | true |
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_algorithm | "randomized" |
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_components | 182 |
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_iter | 99 |
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_random_state | 42 |
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_tol | 0.0 |
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.naive_bayes.BernoulliNB)(1)_memory | null |
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.naive_bayes.BernoulliNB)(1)_steps | [{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}] |
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.naive_bayes.BernoulliNB)(1)_verbose | false |
0.8413 ± 0.0095 Per class Cross-validation details (10-fold Crossvalidation)
|
0.765 ± 0.0141 Per class Cross-validation details (10-fold Crossvalidation)
|
0.5298 ± 0.0281 Cross-validation details (10-fold Crossvalidation)
|
0.3383 ± 0.0171 Cross-validation details (10-fold Crossvalidation)
|
0.3483 ± 0.0083 Cross-validation details (10-fold Crossvalidation)
|
0.4999 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.765 ± 0.0141 Cross-validation details (10-fold Crossvalidation)
|
3468 Per class Cross-validation details (10-fold Crossvalidation) |
0.765 ± 0.0143 Per class Cross-validation details (10-fold Crossvalidation)
|
0.765 ± 0.0141 Cross-validation details (10-fold Crossvalidation)
|
0.9998 ± 0.0001 Cross-validation details (10-fold Crossvalidation)
|
0.6969 ± 0.0166 Cross-validation details (10-fold Crossvalidation)
|
0.4999 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.4051 ± 0.0059 Cross-validation details (10-fold Crossvalidation)
|
0.8104 ± 0.0119 Cross-validation details (10-fold Crossvalidation)
|
0.7648 ± 0.014 Cross-validation details (10-fold Crossvalidation)
|