Run
10462724

Run 10462724

Task 3891 (Supervised Classification) gina_agnostic Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.discr iminant_analysis.LinearDiscriminantAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.15047440670511136
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth332
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features11
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes2005
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.04405149424267779
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.7075695864209764
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.14124702457386942
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.21167408942797397
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.28672746139965855
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators717
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scoretrue
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components375
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkagenull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"svd"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol0.02475306959361364
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7654 ± 0.153
Per class
Cross-validation details (10-fold Crossvalidation)
0.6936 ± 0.1427
Per class
Cross-validation details (10-fold Crossvalidation)
0.3958 ± 0.234
Cross-validation details (10-fold Crossvalidation)
0.4027 ± 0.2178
Cross-validation details (10-fold Crossvalidation)
0.2991 ± 0.1085
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6993 ± 0.1166
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.7118 ± 0.0593
Per class
Cross-validation details (10-fold Crossvalidation)
0.6993 ± 0.1166
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.5983 ± 0.217
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4603 ± 0.0938
Cross-validation details (10-fold Crossvalidation)
0.9207 ± 0.1876
Cross-validation details (10-fold Crossvalidation)
0.697 ± 0.1169
Cross-validation details (10-fold Crossvalidation)