Run
10462661

Run 10462661

Task 3891 (Supervised Classification) gina_agnostic Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.ensemble ._forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.tree._classes.DecisionTreeClassifier(3)_ccp_alpha0.33324289350209724
sklearn.tree._classes.DecisionTreeClassifier(3)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(3)_criterion"entropy"
sklearn.tree._classes.DecisionTreeClassifier(3)_max_depth900
sklearn.tree._classes.DecisionTreeClassifier(3)_max_features0.3429277669133419
sklearn.tree._classes.DecisionTreeClassifier(3)_max_leaf_nodes392
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_decrease0.013195227788599363
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_splitnull
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_leaf0.12590075678133258
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_split0.42189250004128176
sklearn.tree._classes.DecisionTreeClassifier(3)_min_weight_fraction_leaf0.2685429521748486
sklearn.tree._classes.DecisionTreeClassifier(3)_presort"deprecated"
sklearn.tree._classes.DecisionTreeClassifier(3)_random_state42
sklearn.tree._classes.DecisionTreeClassifier(3)_splitter"random"
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.18278321047012458
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"entropy"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth340
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features6
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes2941
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.2786309712249712
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.5443758469341146
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.2506204273161399
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.46318870717642424
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.381849392922142
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators1733
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.tree._classes.DecisionTreeClassifier),step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.4987
Per class
Cross-validation details (10-fold Crossvalidation)
0 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5084 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.5084 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)