Issue | #Downvotes for this reason | By |
---|
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,ste p_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1) | Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``. |
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components | 180 |
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priors | null |
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage | null |
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver | "svd" |
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariance | false |
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol | 0.14041077329366677 |
sklearn.preprocessing._data.Normalizer(1)_copy | false |
sklearn.preprocessing._data.Normalizer(1)_norm | "l1" |
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memory | null |
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps | [{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}] |
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbose | false |
0.9049 ± 0.0168 Per class Cross-validation details (10-fold Crossvalidation)
|
0.8371 ± 0.0155 Per class Cross-validation details (10-fold Crossvalidation)
|
0.6741 ± 0.0307 Cross-validation details (10-fold Crossvalidation)
|
0.6385 ± 0.0299 Cross-validation details (10-fold Crossvalidation)
|
0.1851 ± 0.0148 Cross-validation details (10-fold Crossvalidation)
|
0.4999 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.8371 ± 0.0154 Cross-validation details (10-fold Crossvalidation)
|
3468 Per class Cross-validation details (10-fold Crossvalidation) |
0.8371 ± 0.0148 Per class Cross-validation details (10-fold Crossvalidation)
|
0.8371 ± 0.0154 Cross-validation details (10-fold Crossvalidation)
|
0.9998 ± 0.0001 Cross-validation details (10-fold Crossvalidation)
|
0.3704 ± 0.0297 Cross-validation details (10-fold Crossvalidation)
|
0.4999 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.3601 ± 0.0226 Cross-validation details (10-fold Crossvalidation)
|
0.7203 ± 0.0453 Cross-validation details (10-fold Crossvalidation)
|
0.8371 ± 0.0153 Cross-validation details (10-fold Crossvalidation)
|