Issue | #Downvotes for this reason | By |
---|
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_sele ction.SelectPercentile,step_1=sklearn.naive_bayes.BernoulliNB)(1) | Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``. |
sklearn.naive_bayes.BernoulliNB(11)_alpha | 58.91566676947013 |
sklearn.naive_bayes.BernoulliNB(11)_binarize | 0.0 |
sklearn.naive_bayes.BernoulliNB(11)_class_prior | null |
sklearn.naive_bayes.BernoulliNB(11)_fit_prior | true |
sklearn.feature_selection._univariate_selection.SelectPercentile(1)_percentile | 91.54455285578692 |
sklearn.feature_selection._univariate_selection.SelectPercentile(1)_score_func | {"oml-python:serialized_object": "function", "value": "sklearn.feature_selection._univariate_selection.chi2"} |
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.naive_bayes.BernoulliNB)(1)_memory | null |
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.naive_bayes.BernoulliNB)(1)_steps | [{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}] |
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.naive_bayes.BernoulliNB)(1)_verbose | false |
0.8803 ± 0.0202 Per class Cross-validation details (10-fold Crossvalidation)
|
0.7917 ± 0.0217 Per class Cross-validation details (10-fold Crossvalidation)
|
0.5839 ± 0.0432 Cross-validation details (10-fold Crossvalidation)
|
0.5849 ± 0.0418 Cross-validation details (10-fold Crossvalidation)
|
0.2076 ± 0.0208 Cross-validation details (10-fold Crossvalidation)
|
0.4999 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.7924 ± 0.0215 Cross-validation details (10-fold Crossvalidation)
|
3468 Per class Cross-validation details (10-fold Crossvalidation) |
0.7952 ± 0.0221 Per class Cross-validation details (10-fold Crossvalidation)
|
0.7924 ± 0.0215 Cross-validation details (10-fold Crossvalidation)
|
0.9998 ± 0.0001 Cross-validation details (10-fold Crossvalidation)
|
0.4153 ± 0.0417 Cross-validation details (10-fold Crossvalidation)
|
0.4999 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.4466 ± 0.0238 Cross-validation details (10-fold Crossvalidation)
|
0.8933 ± 0.0475 Cross-validation details (10-fold Crossvalidation)
|
0.7915 ± 0.0216 Cross-validation details (10-fold Crossvalidation)
|