Run
10462454

Run 10462454

Task 3891 (Supervised Classification) gina_agnostic Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.Trunc atedSVD,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components211
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.5588043123734355
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"lsqr"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol0.8868542472078974
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_algorithm"randomized"
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_components182
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_iter99
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_random_state42
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_tol0.0
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._truncated_svd.TruncatedSVD,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9263 ± 0.015
Per class
Cross-validation details (10-fold Crossvalidation)
0.8507 ± 0.014
Per class
Cross-validation details (10-fold Crossvalidation)
0.7015 ± 0.0281
Cross-validation details (10-fold Crossvalidation)
0.6466 ± 0.023
Cross-validation details (10-fold Crossvalidation)
0.1826 ± 0.0114
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.8509 ± 0.0141
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.852 ± 0.0152
Per class
Cross-validation details (10-fold Crossvalidation)
0.8509 ± 0.0141
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.3652 ± 0.0228
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3377 ± 0.017
Cross-validation details (10-fold Crossvalidation)
0.6754 ± 0.034
Cross-validation details (10-fold Crossvalidation)
0.8504 ± 0.0139
Cross-validation details (10-fold Crossvalidation)