Run
10462404

Run 10462404

Task 3891 (Supervised Classification) gina_agnostic Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_sele ction.SelectKBest,step_1=sklearn.discriminant_analysis.LinearDiscriminantAn alysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components344
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.4381389266968132
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"eigen"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol0.0021526347233949174
sklearn.feature_selection._univariate_selection.SelectKBest(1)_k880
sklearn.feature_selection._univariate_selection.SelectKBest(1)_score_func{"oml-python:serialized_object": "function", "value": "sklearn.feature_selection._univariate_selection.chi2"}
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectKBest,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectKBest,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectKBest,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9354 ± 0.0148
Per class
Cross-validation details (10-fold Crossvalidation)
0.8644 ± 0.0162
Per class
Cross-validation details (10-fold Crossvalidation)
0.7287 ± 0.0323
Cross-validation details (10-fold Crossvalidation)
0.6947 ± 0.0298
Cross-validation details (10-fold Crossvalidation)
0.1568 ± 0.0146
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.8645 ± 0.0162
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.8648 ± 0.0163
Per class
Cross-validation details (10-fold Crossvalidation)
0.8645 ± 0.0162
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.3137 ± 0.0291
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3262 ± 0.0227
Cross-validation details (10-fold Crossvalidation)
0.6525 ± 0.0455
Cross-validation details (10-fold Crossvalidation)
0.8642 ± 0.016
Cross-validation details (10-fold Crossvalidation)