Run
10462367

Run 10462367

Task 3891 (Supervised Classification) gina_agnostic Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.linear_model._stoch astic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.MultinomialNB(6)_alpha102.65269975513274
sklearn.naive_bayes.MultinomialNB(6)_class_priornull
sklearn.naive_bayes.MultinomialNB(6)_fit_priortrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha3.6348228201561805e-05
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon1.8202544260965507
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.5619530073925053
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.0766488914288742
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"invscaling"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"squared_loss"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter231
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change19
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.20235389994998038
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.09036472381124684
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.MultinomialNB),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5065 ± 0.021
Per class
Cross-validation details (10-fold Crossvalidation)
0.5064 ± 0.0209
Per class
Cross-validation details (10-fold Crossvalidation)
0.0129 ± 0.0419
Cross-validation details (10-fold Crossvalidation)
0.0123 ± 0.0413
Cross-validation details (10-fold Crossvalidation)
0.4937 ± 0.0207
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5063 ± 0.0207
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.5066 ± 0.0211
Per class
Cross-validation details (10-fold Crossvalidation)
0.5063 ± 0.0207
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9876 ± 0.0413
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.7026 ± 0.0146
Cross-validation details (10-fold Crossvalidation)
1.4054 ± 0.0292
Cross-validation details (10-fold Crossvalidation)
0.5065 ± 0.021
Cross-validation details (10-fold Crossvalidation)