Run
10462273

Run 10462273

Task 3891 (Supervised Classification) gina_agnostic Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.tree. _classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.tree._classes.DecisionTreeClassifier(3)_ccp_alpha0.043118073896611375
sklearn.tree._classes.DecisionTreeClassifier(3)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(3)_criterion"entropy"
sklearn.tree._classes.DecisionTreeClassifier(3)_max_depth395
sklearn.tree._classes.DecisionTreeClassifier(3)_max_features0.056843479516205137
sklearn.tree._classes.DecisionTreeClassifier(3)_max_leaf_nodes1985
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_decrease0.023304235645004768
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_splitnull
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_leaf0.1315160930870599
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_split0.24521730211658688
sklearn.tree._classes.DecisionTreeClassifier(3)_min_weight_fraction_leaf0.39508661759136965
sklearn.tree._classes.DecisionTreeClassifier(3)_presort"deprecated"
sklearn.tree._classes.DecisionTreeClassifier(3)_random_state42
sklearn.tree._classes.DecisionTreeClassifier(3)_splitter"best"
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.15047440670511136
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth332
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features11
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes2005
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.04405149424267779
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.7075695864209764
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.14124702457386942
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.21167408942797397
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.28672746139965855
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators717
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scoretrue
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.ensemble._forest.RandomForestClassifier),step_1=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6687 ± 0.0345
Per class
Cross-validation details (10-fold Crossvalidation)
0.6822 ± 0.035
Per class
Cross-validation details (10-fold Crossvalidation)
0.3651 ± 0.069
Cross-validation details (10-fold Crossvalidation)
0.1667 ± 0.0289
Cross-validation details (10-fold Crossvalidation)
0.4319 ± 0.0116
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6831 ± 0.0343
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.6842 ± 0.0339
Per class
Cross-validation details (10-fold Crossvalidation)
0.6831 ± 0.0343
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.864 ± 0.0232
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4654 ± 0.0137
Cross-validation details (10-fold Crossvalidation)
0.9309 ± 0.0273
Cross-validation details (10-fold Crossvalidation)
0.6822 ± 0.0345
Cross-validation details (10-fold Crossvalidation)