Run
10462262

Run 10462262

Task 3891 (Supervised Classification) gina_agnostic Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_sele ction.SelectPercentile,step_1=sklearn.linear_model._stochastic_gradient.SGD Classifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.0005076761147616891
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon48.2774118054413
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.24424427151231037
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.9140742258608568
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"invscaling"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"perceptron"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1033
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change64
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l1"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.8396818425996576
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.5308144837096674
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.02336239992829192
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.feature_selection._univariate_selection.SelectPercentile(1)_percentile16.708516771834525
sklearn.feature_selection._univariate_selection.SelectPercentile(1)_score_func{"oml-python:serialized_object": "function", "value": "sklearn.feature_selection._univariate_selection.chi2"}
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8149 ± 0.0123
Per class
Cross-validation details (10-fold Crossvalidation)
0.8149 ± 0.0121
Per class
Cross-validation details (10-fold Crossvalidation)
0.6297 ± 0.0244
Cross-validation details (10-fold Crossvalidation)
0.6296 ± 0.0242
Cross-validation details (10-fold Crossvalidation)
0.1851 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.8149 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.8149 ± 0.0127
Per class
Cross-validation details (10-fold Crossvalidation)
0.8149 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.3703 ± 0.0242
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4303 ± 0.0141
Cross-validation details (10-fold Crossvalidation)
0.8606 ± 0.0282
Cross-validation details (10-fold Crossvalidation)
0.8149 ± 0.0123
Cross-validation details (10-fold Crossvalidation)