Run
10462204

Run 10462204

Task 3891 (Supervised Classification) gina_agnostic Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochast ic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.00032936320481511116
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon7.219901122156295
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.49419888404241763
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.9490932858258
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1268
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.8679383567821802
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.3277547305066445
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7356 ± 0.0991
Per class
Cross-validation details (10-fold Crossvalidation)
0.7268 ± 0.1522
Per class
Cross-validation details (10-fold Crossvalidation)
0.4687 ± 0.198
Cross-validation details (10-fold Crossvalidation)
0.4658 ± 0.204
Cross-validation details (10-fold Crossvalidation)
0.267 ± 0.102
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.733 ± 0.102
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.7605 ± 0.0271
Per class
Cross-validation details (10-fold Crossvalidation)
0.733 ± 0.102
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.5342 ± 0.204
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5167 ± 0.0899
Cross-validation details (10-fold Crossvalidation)
1.0336 ± 0.1798
Cross-validation details (10-fold Crossvalidation)
0.7356 ± 0.0991
Cross-validation details (10-fold Crossvalidation)