Run
10462141

Run 10462141

Task 3891 (Supervised Classification) gina_agnostic Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_sele ction.GenericUnivariateSelect,step_1=sklearn.naive_bayes.MultinomialNB)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.MultinomialNB(6)_alpha0.000334866883779203
sklearn.naive_bayes.MultinomialNB(6)_class_priornull
sklearn.naive_bayes.MultinomialNB(6)_fit_priortrue
sklearn.feature_selection._univariate_selection.GenericUnivariateSelect(1)_mode"fdr"
sklearn.feature_selection._univariate_selection.GenericUnivariateSelect(1)_param0.41665016240906816
sklearn.feature_selection._univariate_selection.GenericUnivariateSelect(1)_score_func{"oml-python:serialized_object": "function", "value": "sklearn.feature_selection._univariate_selection.f_classif"}
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.GenericUnivariateSelect,step_1=sklearn.naive_bayes.MultinomialNB)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.GenericUnivariateSelect,step_1=sklearn.naive_bayes.MultinomialNB)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.GenericUnivariateSelect,step_1=sklearn.naive_bayes.MultinomialNB)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8094 ± 0.0133
Per class
Cross-validation details (10-fold Crossvalidation)
0.7974 ± 0.0128
Per class
Cross-validation details (10-fold Crossvalidation)
0.5955 ± 0.0255
Cross-validation details (10-fold Crossvalidation)
0.5961 ± 0.0254
Cross-validation details (10-fold Crossvalidation)
0.2019 ± 0.0127
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.7982 ± 0.0127
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.801 ± 0.0126
Per class
Cross-validation details (10-fold Crossvalidation)
0.7982 ± 0.0127
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4038 ± 0.0254
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4493 ± 0.0141
Cross-validation details (10-fold Crossvalidation)
0.8987 ± 0.0282
Cross-validation details (10-fold Crossvalidation)
0.7972 ± 0.0128
Cross-validation details (10-fold Crossvalidation)