Run
10462137

Run 10462137

Task 3891 (Supervised Classification) gina_agnostic Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.tr ee._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.tree._classes.DecisionTreeClassifier(3)_ccp_alpha0.11904514869433247
sklearn.tree._classes.DecisionTreeClassifier(3)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(3)_criterion"entropy"
sklearn.tree._classes.DecisionTreeClassifier(3)_max_depth230
sklearn.tree._classes.DecisionTreeClassifier(3)_max_features0.1967933139189502
sklearn.tree._classes.DecisionTreeClassifier(3)_max_leaf_nodes3228
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_decrease0.13009030872201144
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_splitnull
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_leaf0.0008001567343371542
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_split0.23789505492363852
sklearn.tree._classes.DecisionTreeClassifier(3)_min_weight_fraction_leaf0.0002857995854868012
sklearn.tree._classes.DecisionTreeClassifier(3)_presort"deprecated"
sklearn.tree._classes.DecisionTreeClassifier(3)_random_state42
sklearn.tree._classes.DecisionTreeClassifier(3)_splitter"random"
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6782 ± 0.0232
Per class
Cross-validation details (10-fold Crossvalidation)
0.6775 ± 0.0262
Per class
Cross-validation details (10-fold Crossvalidation)
0.3856 ± 0.0463
Cross-validation details (10-fold Crossvalidation)
0.2149 ± 0.0239
Cross-validation details (10-fold Crossvalidation)
0.4062 ± 0.0103
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6952 ± 0.0227
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.7433 ± 0.0257
Per class
Cross-validation details (10-fold Crossvalidation)
0.6952 ± 0.0227
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8127 ± 0.0206
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4508 ± 0.0113
Cross-validation details (10-fold Crossvalidation)
0.9017 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
0.6914 ± 0.0232
Cross-validation details (10-fold Crossvalidation)