Run
10462024

Run 10462024

Task 3891 (Supervised Classification) gina_agnostic Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransf ormer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha3.8379096456412656e-07
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon26.722888197385537
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.46368524929816024
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"optimal"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"squared_hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter2150
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change67
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.568502072695891
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.13609856993835495
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.47205224938192536
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.preprocessing._data.QuantileTransformer(1)_copyfalse
sklearn.preprocessing._data.QuantileTransformer(1)_ignore_implicit_zerosfalse
sklearn.preprocessing._data.QuantileTransformer(1)_n_quantiles405
sklearn.preprocessing._data.QuantileTransformer(1)_output_distribution"normal"
sklearn.preprocessing._data.QuantileTransformer(1)_random_state42
sklearn.preprocessing._data.QuantileTransformer(1)_subsample33516517
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransformer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransformer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransformer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8144 ± 0.0168
Per class
Cross-validation details (10-fold Crossvalidation)
0.8146 ± 0.0166
Per class
Cross-validation details (10-fold Crossvalidation)
0.629 ± 0.0334
Cross-validation details (10-fold Crossvalidation)
0.629 ± 0.0333
Cross-validation details (10-fold Crossvalidation)
0.1854 ± 0.0166
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.8146 ± 0.0166
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.8146 ± 0.0174
Per class
Cross-validation details (10-fold Crossvalidation)
0.8146 ± 0.0166
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.3709 ± 0.0333
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4306 ± 0.0194
Cross-validation details (10-fold Crossvalidation)
0.8613 ± 0.0388
Cross-validation details (10-fold Crossvalidation)
0.8144 ± 0.0168
Cross-validation details (10-fold Crossvalidation)