Run
10462018

Run 10462018

Task 3891 (Supervised Classification) gina_agnostic Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPC A,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components219
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.8530043260029964
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"eigen"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol3.234756173051935e-06
sklearn.decomposition._kernel_pca.KernelPCA(1)_alpha1.0
sklearn.decomposition._kernel_pca.KernelPCA(1)_coef01
sklearn.decomposition._kernel_pca.KernelPCA(1)_copy_Xfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_degree3
sklearn.decomposition._kernel_pca.KernelPCA(1)_eigen_solver"dense"
sklearn.decomposition._kernel_pca.KernelPCA(1)_fit_inverse_transformfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_gammanull
sklearn.decomposition._kernel_pca.KernelPCA(1)_kernel"cosine"
sklearn.decomposition._kernel_pca.KernelPCA(1)_kernel_paramsnull
sklearn.decomposition._kernel_pca.KernelPCA(1)_max_iter300
sklearn.decomposition._kernel_pca.KernelPCA(1)_n_components355
sklearn.decomposition._kernel_pca.KernelPCA(1)_n_jobs1
sklearn.decomposition._kernel_pca.KernelPCA(1)_random_state42
sklearn.decomposition._kernel_pca.KernelPCA(1)_remove_zero_eigtrue
sklearn.decomposition._kernel_pca.KernelPCA(1)_tol0
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPCA,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPCA,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._kernel_pca.KernelPCA,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9203 ± 0.0147
Per class
Cross-validation details (10-fold Crossvalidation)
0.8372 ± 0.0114
Per class
Cross-validation details (10-fold Crossvalidation)
0.6744 ± 0.0228
Cross-validation details (10-fold Crossvalidation)
0.6652 ± 0.022
Cross-validation details (10-fold Crossvalidation)
0.1688 ± 0.0109
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.8374 ± 0.0114
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.8379 ± 0.0117
Per class
Cross-validation details (10-fold Crossvalidation)
0.8374 ± 0.0114
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.3376 ± 0.0217
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3656 ± 0.0161
Cross-validation details (10-fold Crossvalidation)
0.7314 ± 0.0322
Cross-validation details (10-fold Crossvalidation)
0.837 ± 0.0113
Cross-validation details (10-fold Crossvalidation)