Run
10462014

Run 10462014

Task 9985 (Supervised Classification) first-order-theorem-proving Uploaded 20-05-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(4)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing.data.StandardScaler(35)_copytrue
sklearn.preprocessing.data.StandardScaler(35)_with_meantrue
sklearn.preprocessing.data.StandardScaler(35)_with_stdtrue
sklearn.impute._base.SimpleImputer(11)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(11)_copytrue
sklearn.impute._base.SimpleImputer(11)_fill_valuenull
sklearn.impute._base.SimpleImputer(11)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(11)_strategy"median"
sklearn.impute._base.SimpleImputer(11)_verbose0
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(4)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(4)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(4)_verbosefalse
sklearn.svm.classes.SVC(40)_C28.474882028277037
sklearn.svm.classes.SVC(40)_cache_size200
sklearn.svm.classes.SVC(40)_class_weightnull
sklearn.svm.classes.SVC(40)_coef00.9087230217297251
sklearn.svm.classes.SVC(40)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(40)_degree4
sklearn.svm.classes.SVC(40)_gamma0.1449257658205107
sklearn.svm.classes.SVC(40)_kernel"rbf"
sklearn.svm.classes.SVC(40)_max_iter-1
sklearn.svm.classes.SVC(40)_probabilitytrue
sklearn.svm.classes.SVC(40)_random_state1
sklearn.svm.classes.SVC(40)_shrinkingtrue
sklearn.svm.classes.SVC(40)_tol0.001
sklearn.svm.classes.SVC(40)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8329 ± 0.0102
Per class
Cross-validation details (10-fold Crossvalidation)
0.5633 ± 0.0172
Per class
Cross-validation details (10-fold Crossvalidation)
0.4222 ± 0.0236
Cross-validation details (10-fold Crossvalidation)
0.3303 ± 0.0093
Cross-validation details (10-fold Crossvalidation)
0.1943 ± 0.0015
Cross-validation details (10-fold Crossvalidation)
0.2508 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.5856 ± 0.0157
Cross-validation details (10-fold Crossvalidation)
6118
Per class
Cross-validation details (10-fold Crossvalidation)
0.5613 ± 0.0204
Per class
Cross-validation details (10-fold Crossvalidation)
0.5856 ± 0.0157
Cross-validation details (10-fold Crossvalidation)
2.3 ± 0.0025
Cross-validation details (10-fold Crossvalidation)
0.7748 ± 0.0057
Cross-validation details (10-fold Crossvalidation)
0.3541 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.3059 ± 0.0031
Cross-validation details (10-fold Crossvalidation)
0.8638 ± 0.0087
Cross-validation details (10-fold Crossvalidation)
0.442 ± 0.0188
Cross-validation details (10-fold Crossvalidation)