Run
10461909

Run 10461909

Task 3891 (Supervised Classification) gina_agnostic Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransf ormer,step_1=sklearn.naive_bayes.BernoulliNB)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.BernoulliNB(11)_alpha106.23269353227369
sklearn.naive_bayes.BernoulliNB(11)_binarize0.0
sklearn.naive_bayes.BernoulliNB(11)_class_priornull
sklearn.naive_bayes.BernoulliNB(11)_fit_priortrue
sklearn.preprocessing._data.QuantileTransformer(1)_copyfalse
sklearn.preprocessing._data.QuantileTransformer(1)_ignore_implicit_zerosfalse
sklearn.preprocessing._data.QuantileTransformer(1)_n_quantiles405
sklearn.preprocessing._data.QuantileTransformer(1)_output_distribution"normal"
sklearn.preprocessing._data.QuantileTransformer(1)_random_state42
sklearn.preprocessing._data.QuantileTransformer(1)_subsample33516517
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransformer,step_1=sklearn.naive_bayes.BernoulliNB)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransformer,step_1=sklearn.naive_bayes.BernoulliNB)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransformer,step_1=sklearn.naive_bayes.BernoulliNB)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8585 ± 0.0257
Per class
Cross-validation details (10-fold Crossvalidation)
0.7415 ± 0.0203
Per class
Cross-validation details (10-fold Crossvalidation)
0.4928 ± 0.0387
Cross-validation details (10-fold Crossvalidation)
0.4961 ± 0.0368
Cross-validation details (10-fold Crossvalidation)
0.2518 ± 0.0185
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.7477 ± 0.0191
Cross-validation details (10-fold Crossvalidation)
3468
Per class
Cross-validation details (10-fold Crossvalidation)
0.7699 ± 0.0193
Per class
Cross-validation details (10-fold Crossvalidation)
0.7477 ± 0.0191
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.5038 ± 0.037
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4936 ± 0.0196
Cross-validation details (10-fold Crossvalidation)
0.9874 ± 0.0392
Cross-validation details (10-fold Crossvalidation)
0.7452 ± 0.0194
Cross-validation details (10-fold Crossvalidation)