Run
10461808

Run 10461808

Task 9899 (Supervised Classification) bank-marketing Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=automl.uti l.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.BernoulliNB),step _2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.BernoulliNB(11)_alpha122.73729863759704
sklearn.naive_bayes.BernoulliNB(11)_binarize0.0
sklearn.naive_bayes.BernoulliNB(11)_class_priornull
sklearn.naive_bayes.BernoulliNB(11)_fit_priorfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha3.3160197219085883
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon45.90854041440074
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.070457064714678
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.008310521506290023
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"modified_huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1895
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change68
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l1"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.42133760502491435
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.9053451575730955
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.BernoulliNB),step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.BernoulliNB),step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.naive_bayes.BernoulliNB),step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4564 ± 0.0474
Per class
Cross-validation details (10-fold Crossvalidation)
0.4411 ± 0.0301
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0285 ± 0.0314
Cross-validation details (10-fold Crossvalidation)
-3.0962 ± 0.1879
Cross-validation details (10-fold Crossvalidation)
0.6415 ± 0.0284
Cross-validation details (10-fold Crossvalidation)
0.2041 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.3585 ± 0.0284
Cross-validation details (10-fold Crossvalidation)
4521
Per class
Cross-validation details (10-fold Crossvalidation)
0.7713 ± 0.0262
Per class
Cross-validation details (10-fold Crossvalidation)
0.3585 ± 0.0284
Cross-validation details (10-fold Crossvalidation)
0.5155 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
3.1436 ± 0.1424
Cross-validation details (10-fold Crossvalidation)
0.3193 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.8009 ± 0.0177
Cross-validation details (10-fold Crossvalidation)
2.5082 ± 0.0582
Cross-validation details (10-fold Crossvalidation)
0.4564 ± 0.0474
Cross-validation details (10-fold Crossvalidation)