Run
10461798

Run 10461798

Task 9899 (Supervised Classification) bank-marketing Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.de composition._kernel_pca.KernelPCA,step_2=sklearn.naive_bayes.BernoulliNB)(1 )Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.BernoulliNB(11)_alpha127.37659166769672
sklearn.naive_bayes.BernoulliNB(11)_binarize0.0
sklearn.naive_bayes.BernoulliNB(11)_class_priornull
sklearn.naive_bayes.BernoulliNB(11)_fit_priorfalse
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.decomposition._kernel_pca.KernelPCA(1)_alpha1.0
sklearn.decomposition._kernel_pca.KernelPCA(1)_coef01
sklearn.decomposition._kernel_pca.KernelPCA(1)_copy_Xfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_degree3
sklearn.decomposition._kernel_pca.KernelPCA(1)_eigen_solver"dense"
sklearn.decomposition._kernel_pca.KernelPCA(1)_fit_inverse_transformfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_gammanull
sklearn.decomposition._kernel_pca.KernelPCA(1)_kernel"cosine"
sklearn.decomposition._kernel_pca.KernelPCA(1)_kernel_paramsnull
sklearn.decomposition._kernel_pca.KernelPCA(1)_max_iter23
sklearn.decomposition._kernel_pca.KernelPCA(1)_n_components14
sklearn.decomposition._kernel_pca.KernelPCA(1)_n_jobs1
sklearn.decomposition._kernel_pca.KernelPCA(1)_random_state42
sklearn.decomposition._kernel_pca.KernelPCA(1)_remove_zero_eigfalse
sklearn.decomposition._kernel_pca.KernelPCA(1)_tol0
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._kernel_pca.KernelPCA,step_2=sklearn.naive_bayes.BernoulliNB)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._kernel_pca.KernelPCA,step_2=sklearn.naive_bayes.BernoulliNB)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._kernel_pca.KernelPCA,step_2=sklearn.naive_bayes.BernoulliNB)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7597 ± 0.0303
Per class
Cross-validation details (10-fold Crossvalidation)
0.7309 ± 0.016
Per class
Cross-validation details (10-fold Crossvalidation)
0.1915 ± 0.0283
Cross-validation details (10-fold Crossvalidation)
-2.4784 ± 0.0681
Cross-validation details (10-fold Crossvalidation)
0.4247 ± 0.0086
Cross-validation details (10-fold Crossvalidation)
0.2041 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.6722 ± 0.0205
Cross-validation details (10-fold Crossvalidation)
4521
Per class
Cross-validation details (10-fold Crossvalidation)
0.8631 ± 0.0122
Per class
Cross-validation details (10-fold Crossvalidation)
0.6722 ± 0.0205
Cross-validation details (10-fold Crossvalidation)
0.5155 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
2.0815 ± 0.0408
Cross-validation details (10-fold Crossvalidation)
0.3193 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.4628 ± 0.0086
Cross-validation details (10-fold Crossvalidation)
1.4495 ± 0.026
Cross-validation details (10-fold Crossvalidation)
0.6904 ± 0.0311
Cross-validation details (10-fold Crossvalidation)