Run
10461716

Run 10461716

Task 9899 (Supervised Classification) bank-marketing Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.pr eprocessing._data.PolynomialFeatures,step_2=sklearn.discriminant_analysis.L inearDiscriminantAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components378
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkagenull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"svd"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol0.0754846302526216
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.preprocessing._data.PolynomialFeatures(1)_degree2
sklearn.preprocessing._data.PolynomialFeatures(1)_include_biasfalse
sklearn.preprocessing._data.PolynomialFeatures(1)_interaction_onlyfalse
sklearn.preprocessing._data.PolynomialFeatures(1)_order"C"
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.preprocessing._data.PolynomialFeatures,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.preprocessing._data.PolynomialFeatures,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.preprocessing._data.PolynomialFeatures,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8586 ± 0.0363
Per class
Cross-validation details (10-fold Crossvalidation)
0.8839 ± 0.0183
Per class
Cross-validation details (10-fold Crossvalidation)
0.3985 ± 0.098
Cross-validation details (10-fold Crossvalidation)
0.1695 ± 0.0595
Cross-validation details (10-fold Crossvalidation)
0.133 ± 0.0095
Cross-validation details (10-fold Crossvalidation)
0.2041 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.891 ± 0.0164
Cross-validation details (10-fold Crossvalidation)
4521
Per class
Cross-validation details (10-fold Crossvalidation)
0.8795 ± 0.0205
Per class
Cross-validation details (10-fold Crossvalidation)
0.891 ± 0.0164
Cross-validation details (10-fold Crossvalidation)
0.5155 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.6518 ± 0.046
Cross-validation details (10-fold Crossvalidation)
0.3193 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.2938 ± 0.0193
Cross-validation details (10-fold Crossvalidation)
0.9202 ± 0.0601
Cross-validation details (10-fold Crossvalidation)
0.6771 ± 0.0456
Cross-validation details (10-fold Crossvalidation)