Run
10461712

Run 10461712

Task 9899 (Supervised Classification) bank-marketing Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=automl.uti l.sklearn.StackingEstimator(estimator=sklearn.discriminant_analysis.LinearD iscriminantAnalysis),step_2=sklearn.ensemble._weight_boosting.AdaBoostClass ifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_algorithm"SAMME"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_base_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_learning_rate0.6624889537768724
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_n_estimators243
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_random_state42
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components305
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.20573190492471682
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"eigen"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol0.3218207136065134
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.discriminant_analysis.LinearDiscriminantAnalysis),step_2=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.discriminant_analysis.LinearDiscriminantAnalysis),step_2=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=automl.util.sklearn.StackingEstimator(estimator=sklearn.discriminant_analysis.LinearDiscriminantAnalysis),step_2=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8803 ± 0.0265
Per class
Cross-validation details (10-fold Crossvalidation)
0.8748 ± 0.0122
Per class
Cross-validation details (10-fold Crossvalidation)
0.3176 ± 0.075
Cross-validation details (10-fold Crossvalidation)
-2.7768 ± 0.0194
Cross-validation details (10-fold Crossvalidation)
0.4392 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.2041 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.8914 ± 0.0088
Cross-validation details (10-fold Crossvalidation)
4521
Per class
Cross-validation details (10-fold Crossvalidation)
0.8708 ± 0.014
Per class
Cross-validation details (10-fold Crossvalidation)
0.8914 ± 0.0088
Cross-validation details (10-fold Crossvalidation)
0.5155 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
2.1522 ± 0.0104
Cross-validation details (10-fold Crossvalidation)
0.3193 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.442 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
1.3841 ± 0.0067
Cross-validation details (10-fold Crossvalidation)
0.6239 ± 0.0342
Cross-validation details (10-fold Crossvalidation)