Run
10461628

Run 10461628

Task 9899 (Supervised Classification) bank-marketing Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.on e_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._discret ization.KBinsDiscretizer,step_2=sklearn.naive_bayes.MultinomialNB)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.MultinomialNB(6)_alpha4.223482637961228
sklearn.naive_bayes.MultinomialNB(6)_class_priornull
sklearn.naive_bayes.MultinomialNB(6)_fit_priortrue
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_encode"ordinal"
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_n_bins45
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_strategy"uniform"
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._discretization.KBinsDiscretizer,step_2=sklearn.naive_bayes.MultinomialNB)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._discretization.KBinsDiscretizer,step_2=sklearn.naive_bayes.MultinomialNB)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.one_hot_encoding.OneHotEncoderComponent,step_1=sklearn.preprocessing._discretization.KBinsDiscretizer,step_2=sklearn.naive_bayes.MultinomialNB)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7439 ± 0.0356
Per class
Cross-validation details (10-fold Crossvalidation)
0.6979 ± 0.0209
Per class
Cross-validation details (10-fold Crossvalidation)
0.1633 ± 0.0335
Cross-validation details (10-fold Crossvalidation)
-1.3955 ± 0.1562
Cross-validation details (10-fold Crossvalidation)
0.3701 ± 0.0245
Cross-validation details (10-fold Crossvalidation)
0.2041 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.6313 ± 0.0253
Cross-validation details (10-fold Crossvalidation)
4521
Per class
Cross-validation details (10-fold Crossvalidation)
0.861 ± 0.0127
Per class
Cross-validation details (10-fold Crossvalidation)
0.6313 ± 0.0253
Cross-validation details (10-fold Crossvalidation)
0.5155 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
1.814 ± 0.1198
Cross-validation details (10-fold Crossvalidation)
0.3193 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.5954 ± 0.0201
Cross-validation details (10-fold Crossvalidation)
1.8647 ± 0.0629
Cross-validation details (10-fold Crossvalidation)
0.6764 ± 0.0343
Cross-validation details (10-fold Crossvalidation)