Run
10461559

Run 10461559

Task 9899 (Supervised Classification) bank-marketing Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.de composition._pca.PCA,step_2=sklearn.ensemble._forest.RandomForestClassifier )(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.7533341291134524
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"entropy"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth5
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features2
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes905
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.44416618028216837
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.5087739349327938
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.1594599835670951
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.07263538673073869
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.006933990100801646
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators694
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.decomposition._pca.PCA(1)_copyfalse
sklearn.decomposition._pca.PCA(1)_iterated_power30
sklearn.decomposition._pca.PCA(1)_n_components12
sklearn.decomposition._pca.PCA(1)_random_state42
sklearn.decomposition._pca.PCA(1)_svd_solver"randomized"
sklearn.decomposition._pca.PCA(1)_tol2.7340831358131634
sklearn.decomposition._pca.PCA(1)_whitentrue
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._pca.PCA,step_2=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._pca.PCA,step_2=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._pca.PCA,step_2=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.4991
Per class
Cross-validation details (10-fold Crossvalidation)
0.0007 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.2038 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.2041 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.8848 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
4521
Per class
Cross-validation details (10-fold Crossvalidation)
0.8848 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.5155 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.9988 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.3193 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.3193 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)