Run
10461298

Run 10461298

Task 9899 (Supervised Classification) bank-marketing Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.de composition._factor_analysis.FactorAnalysis,step_2=sklearn.discriminant_ana lysis.LinearDiscriminantAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components337
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.9141426344158439
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"lsqr"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol1.6026621379968755e-06
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_copyfalse
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_iterated_power38
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_max_iter9461
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_n_components5
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_noise_variance_initnull
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_random_state42
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_svd_method"randomized"
sklearn.decomposition._factor_analysis.FactorAnalysis(1)_tol0.15202009839418618
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._factor_analysis.FactorAnalysis,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._factor_analysis.FactorAnalysis,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._factor_analysis.FactorAnalysis,step_2=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.821 ± 0.0386
Per class
Cross-validation details (10-fold Crossvalidation)
0.8697 ± 0.0134
Per class
Cross-validation details (10-fold Crossvalidation)
0.2758 ± 0.0847
Cross-validation details (10-fold Crossvalidation)
0.1006 ± 0.0581
Cross-validation details (10-fold Crossvalidation)
0.1523 ± 0.0068
Cross-validation details (10-fold Crossvalidation)
0.2041 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.8914 ± 0.0085
Cross-validation details (10-fold Crossvalidation)
4521
Per class
Cross-validation details (10-fold Crossvalidation)
0.8681 ± 0.0166
Per class
Cross-validation details (10-fold Crossvalidation)
0.8914 ± 0.0085
Cross-validation details (10-fold Crossvalidation)
0.5155 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.7466 ± 0.0321
Cross-validation details (10-fold Crossvalidation)
0.3193 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.295 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
0.924 ± 0.045
Cross-validation details (10-fold Crossvalidation)
0.6014 ± 0.0364
Cross-validation details (10-fold Crossvalidation)