Run
10460487

Run 10460487

Task 9899 (Supervised Classification) bank-marketing Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.de composition._pca.PCA,step_2=sklearn.linear_model._stochastic_gradient.SGDCl assifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha432.74112468854736
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon192962.76641422472
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.4803135034444238
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.7379237560124514
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"perceptron"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter515869122
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change45
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t3.0748708157617965
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.41305569167608275
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.19980917808434628
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.decomposition._pca.PCA(1)_copyfalse
sklearn.decomposition._pca.PCA(1)_iterated_power627
sklearn.decomposition._pca.PCA(1)_n_components1
sklearn.decomposition._pca.PCA(1)_random_state42
sklearn.decomposition._pca.PCA(1)_svd_solver"randomized"
sklearn.decomposition._pca.PCA(1)_tol1.4429641631700068
sklearn.decomposition._pca.PCA(1)_whitentrue
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._pca.PCA,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._pca.PCA,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_2", "step_name": "step_2"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.decomposition._pca.PCA,step_2=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4548 ± 0.0377
Per class
Cross-validation details (10-fold Crossvalidation)
0.3575 ± 0.0298
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0268 ± 0.0223
Cross-validation details (10-fold Crossvalidation)
-3.5101 ± 0.158
Cross-validation details (10-fold Crossvalidation)
0.7063 ± 0.0248
Cross-validation details (10-fold Crossvalidation)
0.2041 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.2937 ± 0.0248
Cross-validation details (10-fold Crossvalidation)
4521
Per class
Cross-validation details (10-fold Crossvalidation)
0.7628 ± 0.0288
Per class
Cross-validation details (10-fold Crossvalidation)
0.2937 ± 0.0248
Cross-validation details (10-fold Crossvalidation)
0.5155 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
3.4612 ± 0.1212
Cross-validation details (10-fold Crossvalidation)
0.3193 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.8404 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
2.6319 ± 0.0462
Cross-validation details (10-fold Crossvalidation)
0.4548 ± 0.0377
Cross-validation details (10-fold Crossvalidation)