Run
10460146

Run 10460146

Task 9899 (Supervised Classification) bank-marketing Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.mu lti_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.na ive_bayes.BernoulliNB)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.BernoulliNB(11)_alpha125.09987133454766
sklearn.naive_bayes.BernoulliNB(11)_binarize0.0
sklearn.naive_bayes.BernoulliNB(11)_class_priornull
sklearn.naive_bayes.BernoulliNB(11)_fit_priortrue
automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent(1)_columnsnull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.naive_bayes.BernoulliNB)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.naive_bayes.BernoulliNB)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.feature_preprocessing.multi_column_label_encoder.MultiColumnLabelEncoderComponent,step_1=sklearn.naive_bayes.BernoulliNB)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6324 ± 0.0413
Per class
Cross-validation details (10-fold Crossvalidation)
0.8315 ± 0.0062
Per class
Cross-validation details (10-fold Crossvalidation)
0.0188 ± 0.0324
Cross-validation details (10-fold Crossvalidation)
-0.0532 ± 0.0758
Cross-validation details (10-fold Crossvalidation)
0.1598 ± 0.0076
Cross-validation details (10-fold Crossvalidation)
0.2041 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.8772 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
4521
Per class
Cross-validation details (10-fold Crossvalidation)
0.8077 ± 0.0243
Per class
Cross-validation details (10-fold Crossvalidation)
0.8772 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
0.5155 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.7834 ± 0.0366
Cross-validation details (10-fold Crossvalidation)
0.3193 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.3298 ± 0.0099
Cross-validation details (10-fold Crossvalidation)
1.0329 ± 0.0305
Cross-validation details (10-fold Crossvalidation)
0.5058 ± 0.01
Cross-validation details (10-fold Crossvalidation)