Run
10460129

Run 10460129

Task 3711 (Supervised Classification) elevators Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=skle arn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoosting Classifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_l2_regularization0.22904639228883208
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_learning_rate0.4572562528277515
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_bins240
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_depth16
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_iter899
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_leaf_nodes479
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_min_samples_leaf1674
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_n_iter_no_change33
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_random_state42
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_scoring"jaccard_weighted"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_tol0.24907407011530364
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_validation_fraction0.3567603744175659
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_warm_startfalse
sklearn.impute._knn.KNNImputer(1)_add_indicatorfalse
sklearn.impute._knn.KNNImputer(1)_copyfalse
sklearn.impute._knn.KNNImputer(1)_metric"nan_euclidean"
sklearn.impute._knn.KNNImputer(1)_missing_valuesNaN
sklearn.impute._knn.KNNImputer(1)_n_neighbors7
sklearn.impute._knn.KNNImputer(1)_weights"distance"
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8814 ± 0.0064
Per class
Cross-validation details (10-fold Crossvalidation)
0.8233 ± 0.005
Per class
Cross-validation details (10-fold Crossvalidation)
0.5757 ± 0.0119
Cross-validation details (10-fold Crossvalidation)
0.4162 ± 0.0106
Cross-validation details (10-fold Crossvalidation)
0.2567 ± 0.0039
Cross-validation details (10-fold Crossvalidation)
0.4271 ± 0
Cross-validation details (10-fold Crossvalidation)
0.8299 ± 0.005
Cross-validation details (10-fold Crossvalidation)
16599
Per class
Cross-validation details (10-fold Crossvalidation)
0.8262 ± 0.0055
Per class
Cross-validation details (10-fold Crossvalidation)
0.8299 ± 0.005
Cross-validation details (10-fold Crossvalidation)
0.8921 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.6009 ± 0.0092
Cross-validation details (10-fold Crossvalidation)
0.4621 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3488 ± 0.0045
Cross-validation details (10-fold Crossvalidation)
0.7547 ± 0.0098
Cross-validation details (10-fold Crossvalidation)
0.7703 ± 0.0059
Cross-validation details (10-fold Crossvalidation)