Run
10460090

Run 10460090

Task 3711 (Supervised Classification) elevators Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.StandardScaler ,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing._data.StandardScaler(1)_copyfalse
sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstrapfalse
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.885065213819556
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth17
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features1
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes6509
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.6968822982374597
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.11383561815939178
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.25825380515424984
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.21147220214367726
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.2577248761340875
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators486
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.StandardScaler,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.StandardScaler,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.StandardScaler,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.5
Per class
Cross-validation details (10-fold Crossvalidation)
0 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4271 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4271 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6909 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
16599
Per class
Cross-validation details (10-fold Crossvalidation)
0.6909 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8921 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4621 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4621 ± 0
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)