Issue | #Downvotes for this reason | By |
---|
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_sele ction.SelectKBest,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifi er)(1) | Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``. |
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_algorithm | "SAMME.R" |
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_base_estimator | null |
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_learning_rate | 3.4704507205950686e-05 |
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_n_estimators | 421 |
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_random_state | 42 |
sklearn.feature_selection._univariate_selection.SelectKBest(1)_k | 12 |
sklearn.feature_selection._univariate_selection.SelectKBest(1)_score_func | {"oml-python:serialized_object": "function", "value": "sklearn.feature_selection._univariate_selection.f_classif"} |
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectKBest,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_memory | null |
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectKBest,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_steps | [{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}] |
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectKBest,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_verbose | false |
0.7014 ± 0.0159 Per class Cross-validation details (10-fold Crossvalidation)
|
0.7653 ± 0.0082 Per class Cross-validation details (10-fold Crossvalidation)
|
0.4311 ± 0.0214 Cross-validation details (10-fold Crossvalidation)
|
0.2314 ± 0.008 Cross-validation details (10-fold Crossvalidation)
|
0.3403 ± 0.0026 Cross-validation details (10-fold Crossvalidation)
|
0.4271 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.7811 ± 0.005 Cross-validation details (10-fold Crossvalidation)
|
16599 Per class Cross-validation details (10-fold Crossvalidation) |
0.7737 ± 0.0051 Per class Cross-validation details (10-fold Crossvalidation)
|
0.7811 ± 0.005 Cross-validation details (10-fold Crossvalidation)
|
0.8921 ± 0.0001 Cross-validation details (10-fold Crossvalidation)
|
0.7969 ± 0.0061 Cross-validation details (10-fold Crossvalidation)
|
0.4621 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.4118 ± 0.0044 Cross-validation details (10-fold Crossvalidation)
|
0.8911 ± 0.0096 Cross-validation details (10-fold Crossvalidation)
|
0.6942 ± 0.013 Cross-validation details (10-fold Crossvalidation)
|