Run
10459961

Run 10459961

Task 3711 (Supervised Classification) elevators Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,ste p_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha1.927445473568579e-07
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon19.02351371566912
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.8986638708045492
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"optimal"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter2328
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change98
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l1"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.36632357237378
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.878008374137085
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.4474392991983098
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.preprocessing._data.Normalizer(1)_copyfalse
sklearn.preprocessing._data.Normalizer(1)_norm"l1"
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4701 ± 0.0379
Per class
Cross-validation details (10-fold Crossvalidation)
0.5554 ± 0.0248
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0629 ± 0.077
Cross-validation details (10-fold Crossvalidation)
-0.0788 ± 0.0557
Cross-validation details (10-fold Crossvalidation)
0.4321 ± 0.0223
Cross-validation details (10-fold Crossvalidation)
0.4271 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5679 ± 0.0223
Cross-validation details (10-fold Crossvalidation)
16599
Per class
Cross-validation details (10-fold Crossvalidation)
0.5456 ± 0.0343
Per class
Cross-validation details (10-fold Crossvalidation)
0.5679 ± 0.0223
Cross-validation details (10-fold Crossvalidation)
0.8921 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1.0117 ± 0.0522
Cross-validation details (10-fold Crossvalidation)
0.4621 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6573 ± 0.0172
Cross-validation details (10-fold Crossvalidation)
1.4225 ± 0.0371
Cross-validation details (10-fold Crossvalidation)
0.4701 ± 0.0379
Cross-validation details (10-fold Crossvalidation)