Run
10459919

Run 10459919

Task 3711 (Supervised Classification) elevators Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=skle arn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.svm._classes.SVC(4)_C2.7559481825224093
sklearn.svm._classes.SVC(4)_break_tiesfalse
sklearn.svm._classes.SVC(4)_cache_size200
sklearn.svm._classes.SVC(4)_class_weightnull
sklearn.svm._classes.SVC(4)_coef0-16.795194590488325
sklearn.svm._classes.SVC(4)_decision_function_shape"ovo"
sklearn.svm._classes.SVC(4)_degree3
sklearn.svm._classes.SVC(4)_gamma0.23703383188394425
sklearn.svm._classes.SVC(4)_kernel"poly"
sklearn.svm._classes.SVC(4)_max_iter-1
sklearn.svm._classes.SVC(4)_probabilityfalse
sklearn.svm._classes.SVC(4)_random_state42
sklearn.svm._classes.SVC(4)_shrinkingfalse
sklearn.svm._classes.SVC(4)_tol4.322852775080245e-05
sklearn.svm._classes.SVC(4)_verbosefalse
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.svm._classes.SVC)(1)_verbosefalse
sklearn.decomposition._pca.PCA(1)_copyfalse
sklearn.decomposition._pca.PCA(1)_iterated_power"auto"
sklearn.decomposition._pca.PCA(1)_n_components4
sklearn.decomposition._pca.PCA(1)_random_state42
sklearn.decomposition._pca.PCA(1)_svd_solver"full"
sklearn.decomposition._pca.PCA(1)_tol2.7297650538545204
sklearn.decomposition._pca.PCA(1)_whitentrue

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5848 ± 0.0106
Per class
Cross-validation details (10-fold Crossvalidation)
0.6454 ± 0.0108
Per class
Cross-validation details (10-fold Crossvalidation)
0.1697 ± 0.0223
Cross-validation details (10-fold Crossvalidation)
0.1148 ± 0.031
Cross-validation details (10-fold Crossvalidation)
0.3545 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
0.4271 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6455 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
16599
Per class
Cross-validation details (10-fold Crossvalidation)
0.6454 ± 0.0095
Per class
Cross-validation details (10-fold Crossvalidation)
0.6455 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
0.8921 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8301 ± 0.0291
Cross-validation details (10-fold Crossvalidation)
0.4621 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5954 ± 0.0105
Cross-validation details (10-fold Crossvalidation)
1.2885 ± 0.0228
Cross-validation details (10-fold Crossvalidation)
0.5848 ± 0.0106
Cross-validation details (10-fold Crossvalidation)