Run
10459890

Run 10459890

Task 3711 (Supervised Classification) elevators Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransf ormer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.30630372919420784
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon33.7249828405618
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.41224692826018566
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.4965316878339854
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"log"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1484
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change38
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.2589545198568541
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.8545684975378179
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.05849188302890762
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.preprocessing._data.QuantileTransformer(1)_copyfalse
sklearn.preprocessing._data.QuantileTransformer(1)_ignore_implicit_zerostrue
sklearn.preprocessing._data.QuantileTransformer(1)_n_quantiles7594
sklearn.preprocessing._data.QuantileTransformer(1)_output_distribution"normal"
sklearn.preprocessing._data.QuantileTransformer(1)_random_state42
sklearn.preprocessing._data.QuantileTransformer(1)_subsample72020320
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransformer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransformer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.QuantileTransformer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7653 ± 0.0125
Per class
Cross-validation details (10-fold Crossvalidation)
0.6885 ± 0.008
Per class
Cross-validation details (10-fold Crossvalidation)
0.3483 ± 0.0135
Cross-validation details (10-fold Crossvalidation)
0.1918 ± 0.0203
Cross-validation details (10-fold Crossvalidation)
0.3236 ± 0.0081
Cross-validation details (10-fold Crossvalidation)
0.4271 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6762 ± 0.0084
Cross-validation details (10-fold Crossvalidation)
16599
Per class
Cross-validation details (10-fold Crossvalidation)
0.7449 ± 0.0058
Per class
Cross-validation details (10-fold Crossvalidation)
0.6762 ± 0.0084
Cross-validation details (10-fold Crossvalidation)
0.8921 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.7577 ± 0.0189
Cross-validation details (10-fold Crossvalidation)
0.4621 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5659 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
1.2246 ± 0.0156
Cross-validation details (10-fold Crossvalidation)
0.7026 ± 0.0071
Cross-validation details (10-fold Crossvalidation)