Run
10459860

Run 10459860

Task 3711 (Supervised Classification) elevators Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,ste p_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha6.981796360205275e-05
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon2.0443549001636168
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.45616689626260415
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.6243014886539016
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"adaptive"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"log"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1175
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change53
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.23079871206063332
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.36470573395572153
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.6239781905438985
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.preprocessing._data.Normalizer(1)_copyfalse
sklearn.preprocessing._data.Normalizer(1)_norm"l1"
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5015 ± 0.0158
Per class
Cross-validation details (10-fold Crossvalidation)
0.6009 ± 0.0116
Per class
Cross-validation details (10-fold Crossvalidation)
0.0555 ± 0.0245
Cross-validation details (10-fold Crossvalidation)
-0.1897 ± 0.0086
Cross-validation details (10-fold Crossvalidation)
0.4715 ± 0.0024
Cross-validation details (10-fold Crossvalidation)
0.4271 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6059 ± 0.0132
Cross-validation details (10-fold Crossvalidation)
16599
Per class
Cross-validation details (10-fold Crossvalidation)
0.5967 ± 0.0105
Per class
Cross-validation details (10-fold Crossvalidation)
0.6059 ± 0.0132
Cross-validation details (10-fold Crossvalidation)
0.8921 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1.1039 ± 0.0056
Cross-validation details (10-fold Crossvalidation)
0.4621 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4854 ± 0.0025
Cross-validation details (10-fold Crossvalidation)
1.0503 ± 0.0054
Cross-validation details (10-fold Crossvalidation)
0.5271 ± 0.0118
Cross-validation details (10-fold Crossvalidation)