Run
10459653

Run 10459653

Task 3711 (Supervised Classification) elevators Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=skle arn.ensemble._weight_boosting.AdaBoostClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_algorithm"SAMME.R"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_base_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_learning_rate2.6767501187425755e-05
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_n_estimators294
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_random_state42
sklearn.impute._knn.KNNImputer(1)_add_indicatorfalse
sklearn.impute._knn.KNNImputer(1)_copyfalse
sklearn.impute._knn.KNNImputer(1)_metric"nan_euclidean"
sklearn.impute._knn.KNNImputer(1)_missing_valuesNaN
sklearn.impute._knn.KNNImputer(1)_n_neighbors21
sklearn.impute._knn.KNNImputer(1)_weights"uniform"
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.impute._knn.KNNImputer,step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6992 ± 0.0159
Per class
Cross-validation details (10-fold Crossvalidation)
0.7653 ± 0.0082
Per class
Cross-validation details (10-fold Crossvalidation)
0.4311 ± 0.0214
Cross-validation details (10-fold Crossvalidation)
0.2323 ± 0.008
Cross-validation details (10-fold Crossvalidation)
0.3399 ± 0.0026
Cross-validation details (10-fold Crossvalidation)
0.4271 ± 0
Cross-validation details (10-fold Crossvalidation)
0.7811 ± 0.005
Cross-validation details (10-fold Crossvalidation)
16599
Per class
Cross-validation details (10-fold Crossvalidation)
0.7737 ± 0.0051
Per class
Cross-validation details (10-fold Crossvalidation)
0.7811 ± 0.005
Cross-validation details (10-fold Crossvalidation)
0.8921 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.7959 ± 0.006
Cross-validation details (10-fold Crossvalidation)
0.4621 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4121 ± 0.004
Cross-validation details (10-fold Crossvalidation)
0.8918 ± 0.0086
Cross-validation details (10-fold Crossvalidation)
0.6942 ± 0.013
Cross-validation details (10-fold Crossvalidation)