Run
10459507

Run 10459507

Task 9981 (Supervised Classification) cnae-9 Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.discriminant_analysis.LinearDiscriminantAnalysis),step_1=skle arn.ensemble._forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstrapfalse
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.9280834257219963
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"entropy"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth139
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features151
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes792
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.35356483279924844
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.1128652976497874
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.42353672927252545
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.40288128796007905
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.20444254392894895
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators1053
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components224
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.3960203156222931
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"lsqr"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol9.82901528839564e-07
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.discriminant_analysis.LinearDiscriminantAnalysis),step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.discriminant_analysis.LinearDiscriminantAnalysis),step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.discriminant_analysis.LinearDiscriminantAnalysis),step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.7762 ± 0.0086
Per class
Cross-validation details (10-fold Crossvalidation)
0.1229 ± 0.0044
Cross-validation details (10-fold Crossvalidation)
0.0708 ± 0.0042
Cross-validation details (10-fold Crossvalidation)
0.1934 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.2204 ± 0.0039
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.2204 ± 0.0039
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
0.9792 ± 0.0015
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.3083 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.9809 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.2204 ± 0.0039
Cross-validation details (10-fold Crossvalidation)