Run
10459436

Run 10459436

Task 9981 (Supervised Classification) cnae-9 Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.svm._classes.SVC),step_1=sklearn.ensemble._forest.RandomFores tClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstrapfalse
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.8080140446705809
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth409
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features49
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes947
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.7483130586691819
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.31259546120173365
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.18829643081561787
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.1325589896786096
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.40757867121139935
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators690
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.svm._classes.SVC(4)_C4.460788507234908e-06
sklearn.svm._classes.SVC(4)_break_tiesfalse
sklearn.svm._classes.SVC(4)_cache_size200
sklearn.svm._classes.SVC(4)_class_weightnull
sklearn.svm._classes.SVC(4)_coef0-29.285513645743023
sklearn.svm._classes.SVC(4)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(4)_degree3
sklearn.svm._classes.SVC(4)_gamma1.0340190915820225e-06
sklearn.svm._classes.SVC(4)_kernel"sigmoid"
sklearn.svm._classes.SVC(4)_max_iter-1
sklearn.svm._classes.SVC(4)_probabilityfalse
sklearn.svm._classes.SVC(4)_random_state42
sklearn.svm._classes.SVC(4)_shrinkingfalse
sklearn.svm._classes.SVC(4)_tol0.0011513570155453651
sklearn.svm._classes.SVC(4)_verbosefalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.svm._classes.SVC),step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.svm._classes.SVC),step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.svm._classes.SVC),step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.5
Per class
Cross-validation details (10-fold Crossvalidation)
0
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.1111
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.1111
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
0.1111
Cross-validation details (10-fold Crossvalidation)