Run
10459323

Run 10459323

Task 9981 (Supervised Classification) cnae-9 Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,ste p_1=sklearn.ensemble._forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.23634277161659623
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"entropy"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth373
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features4
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes928
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.8742412097796085
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.292107831322616
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.408967439134953
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.17252371185832757
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.04734460877932678
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators1157
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scoretrue
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.preprocessing._data.Normalizer(1)_copyfalse
sklearn.preprocessing._data.Normalizer(1)_norm"l2"
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._data.Normalizer,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.5
Per class
Cross-validation details (10-fold Crossvalidation)
0.0005
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.1111
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.1111
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
1
Cross-validation details (10-fold Crossvalidation)
0.1111
Cross-validation details (10-fold Crossvalidation)