Run
10458974

Run 10458974

Task 9981 (Supervised Classification) cnae-9 Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBin sDiscretizer,step_1=sklearn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.svm._classes.SVC(4)_C0.0008149428620025903
sklearn.svm._classes.SVC(4)_break_tiestrue
sklearn.svm._classes.SVC(4)_cache_size200
sklearn.svm._classes.SVC(4)_class_weightnull
sklearn.svm._classes.SVC(4)_coef024.787780067939522
sklearn.svm._classes.SVC(4)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(4)_degree5
sklearn.svm._classes.SVC(4)_gamma0.0016301716248087023
sklearn.svm._classes.SVC(4)_kernel"poly"
sklearn.svm._classes.SVC(4)_max_iter-1
sklearn.svm._classes.SVC(4)_probabilityfalse
sklearn.svm._classes.SVC(4)_random_state42
sklearn.svm._classes.SVC(4)_shrinkingfalse
sklearn.svm._classes.SVC(4)_tol4.6885396241906695e-07
sklearn.svm._classes.SVC(4)_verbosefalse
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_encode"onehot-dense"
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_n_bins95
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_strategy"quantile"
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.svm._classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9021 ± 0.0147
Per class
Cross-validation details (10-fold Crossvalidation)
0.8305 ± 0.0262
Per class
Cross-validation details (10-fold Crossvalidation)
0.8042 ± 0.0294
Cross-validation details (10-fold Crossvalidation)
0.8166 ± 0.0275
Cross-validation details (10-fold Crossvalidation)
0.0387 ± 0.0058
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.8259 ± 0.0261
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.8415 ± 0.0229
Per class
Cross-validation details (10-fold Crossvalidation)
0.8259 ± 0.0261
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
0.1958 ± 0.0294
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.1967 ± 0.0153
Cross-validation details (10-fold Crossvalidation)
0.6258 ± 0.0487
Cross-validation details (10-fold Crossvalidation)
0.8259 ± 0.0261
Cross-validation details (10-fold Crossvalidation)