Run
10458933

Run 10458933

Task 9981 (Supervised Classification) cnae-9 Uploaded 20-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imput ation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient. SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.00013818130725952799
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon14.718069580837021
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.26580512602972817
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.9071201333340626
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter1661
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change66
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l1"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.628774481392466
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.08174666806292757
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.8583310730512863
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.components.data_preprocessing.imputation.ImputationComponent,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse
automl.components.data_preprocessing.imputation.ImputationComponent(1)_add_indicatortrue
automl.components.data_preprocessing.imputation.ImputationComponent(1)_missing_valuesNaN
automl.components.data_preprocessing.imputation.ImputationComponent(1)_strategy"most_frequent"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7135 ± 0.0353
Per class
Cross-validation details (10-fold Crossvalidation)
0.4906 ± 0.063
Per class
Cross-validation details (10-fold Crossvalidation)
0.4271 ± 0.0706
Cross-validation details (10-fold Crossvalidation)
0.4634 ± 0.0662
Cross-validation details (10-fold Crossvalidation)
0.1132 ± 0.014
Cross-validation details (10-fold Crossvalidation)
0.1975
Cross-validation details (10-fold Crossvalidation)
0.4907 ± 0.0628
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.492 ± 0.063
Per class
Cross-validation details (10-fold Crossvalidation)
0.4907 ± 0.0628
Cross-validation details (10-fold Crossvalidation)
3.1699
Cross-validation details (10-fold Crossvalidation)
0.5729 ± 0.0706
Cross-validation details (10-fold Crossvalidation)
0.3143
Cross-validation details (10-fold Crossvalidation)
0.3364 ± 0.0209
Cross-validation details (10-fold Crossvalidation)
1.0704 ± 0.0663
Cross-validation details (10-fold Crossvalidation)
0.4907 ± 0.0628
Cross-validation details (10-fold Crossvalidation)